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1. Introduction 
 

The consumer will not tolerate products that are prone to failure: cars such as the Skoda 
Felicia or the Ford Pinto, motorbikes such as the BSA Dandy scooter, computers such as the 
Apple III - these devices were all commercially unsuccessful simply because of their high 
failure rate. For a product to succeed, the designer must consider the intended lifespan of the 
device and then maximise the probability of its survival for that period. 
Within the systems upon which we depend, or choose to trust, for our survival - be they 
aeroplanes, trains, armaments or systems critical to a country's infrastructure - failure cannot 
be tolerated without adequate notice and provision for repair or replacement. 500 people 
died when  Pfizer's replacement heart valves failed, costing the company upwards of $200 
million. The structural failures of the de Havilland Comet jet aeroplane caused five crashes 
before commercial flights were cancelled. A designer must therefore consider the 
significance of a component failure and make provisions for repair or replacement. 
Components that are too costly to repair or replace, because of limited accessibility or limited 
resources, cannot be subject to failure. The early operational failures of the Hubble telescope 
were due to a flawed mirror. A space mission costing $8 million was required to fix the 
telescope  with correcting lenses. Thus for a system to succeed, a designer must consider the 
cost of repair when deciding on the required level of reliability. 
The trend is for devices to be smaller and more functional than their predecessors. Modular 
redundancy, the use of extra copies of failure-prone hardware that can mask, or take the 
place of its damaged counterparts, has costs in both size and functionality. If this trend 
continues, the price of modular redundancy will become greater and an alternative will need 
to be considered. 
Aside from demanding applications, reliability engineers face a challenge from systems 
formed on unreliable mediums. Plastic electronics systems are formed on flexible substrates, 
typically by the sequential deposition of conductive or semi-conductive organic polymers 
(such as Poly-3,4-ethylenedioxythiophene) using analogue or digital graphic printing 
technologies. Potential applications include flexible displays, photovoltaic’s that can cover 
non-planar surfaces, and smart packaging, including battery testers, flexible batteries and 
RFID tags. However, flexible substrates are prone to distortion, potentially compromising 
the deposited system and causing its failure. Redundancy is particularly well equipped to 
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cope with the failure of known unreliable sub-systems, but is much less well suited to coping 
with a system of which any part, or combination of parts, is likely to fail. 
Since 2002 NASA have been running a series of workshops under the title “Ultra reliability”; 
this with the goal of increasing systems reliability by an order of magnitude across complex 
systems, hardware (including aircraft, aerospace craft and launch vehicles), software, human 
interactions, long life missions, infrastructure development, and cross cutting technologies 
(Shapiro, 2006). It is not difficult to see the difficulties standard redundancy techniques will 
face in long life missions (a manned mission to Mars will take upwards of six months, the 
$720 million Mars Reconnaissance Orbiter has a planned life of at least four years) that are 
vulnerable to cosmic rays. 

 
2. Morphogenesis-inspired ultra reliability 
 

Morphogenesis provides biological systems with a robust framework for the differentiation 
of undeveloped or partially developed cells. Remarkable examples of self-repair 
co-ordinated by morphogenesis include: 

 The human liver:  This organ is capable of withstanding and repairing damage to 
up to two-thirds of its constituent cells. 

 The Salamander:  If bisected from its tail, the tail will often grow back. 
 Ascidians (marine filter feeders), whose blood cells alone have been reported to give 

rise to a fully functional organism (Berrill and Cohen, 1936). 
Morphogens are soluble proteins that diffuse about source cells within developing tissue. 
These chemical messages co-ordinate the differentiation of cells, determining what type of 
cell belongs where in the tissue. This self-assembly, self-repair mechanism can be modelled 
on cellular automata. 
Cellular automata (CA) are systems in which space and time are discrete. CA consist of an 
array of cells, each of which determines its next state (typically an integer or a colour) from 
the state of its immediate neighbours using a next-state rule that is common to every cell. The 
analysis presented in (Jones et al., 2008) showed that for the array of cells to converge to one 
particular pattern of states regardless of its initial conditions, the next-state rule cannot use its 
current state as an input, nor can it use the state of more than one neighbour per axis as an 
input. That is, if the array is two-dimensional, in determining its next state a cell can only use 
inputs from neighbours either above or below itself, either to the left or to the right of itself. 
The paper goes on to demonstrate a deterministic algorithm for the design of CA that 
converge to a specific pattern of states.  
If each state maps to a particular logic function, the CA will converge toward a pattern of 
logic units that could ultimately form any effective electronic system. Such a CA will 
converge to this form regardless of its initial conditions, effectively making it intrinsically 
self-repairing. Furthermore, if the boundary conditions of this CA are altered the CA will 
converge to a different pattern. If this is considered during the design process, the CA 
becomes able to self-reconfigure. 
To be of any use, a reliability mechanism must be less prone to failure than that which it is 
trying to protect. However, as each cell must be identical, achieving this homogeneity for 
large system blocks adds a significant cost in replicated function to the design. Thus the 
optimum scale at which to discretise the design into a cellular architecture is found at the 
minima of total system complexity (see figure 1). 
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The state of each cell must map to a component function, coded in the form of a bitstream 
that can be written to a look-up table and executed. Every bitstream required for the 
automata is stored in the function look-up table. The bitstream is selected by the cell state, 
loaded into the execution look-up table and executed. Every time the cell configuration 
changes (as detected by the cell comparator), the execution look-up table is reloaded with a 
new bitstream. 
Another consideration is the use of redundant cells. Biological implementations of 
morphogenesis have an advantage over any electronic implementations:  in the event of a 
cell being permanently damaged, biology can grow a replacement. This is something that is 
currently not possible in electronic devices. Thus, redundant cells - cells that can take the 
place of any other in the event of permanent failure - must be an integral part of the design. 
In order for a redundant cell to take the place of any damaged cell, every cell would have to 
be directly connected to every other cell. An alternative is to place every cell on a shared bus 
and provide each cell with an appropriate interface.  Dynamic, in-situ re-programmable 
routing is another possibility. There are already various algorithms (Thoma, 2003) for 
managing dynamic routing. 

 
3. Design of a self-assembling self-repairing one-bit full-adder 
 

The schematic for a one-bit full-adder can be seen in figure 3. 
 

 
Fig. 3. A 1-bit full-adder schematic 
 
In order to minimise the component count (and therefore the number of components that 
contribute to the device failure rate) there are a few constraints to the schematic design: 

 Every cell determines its state from two of its immediate neighbours. Other than 
power and clock lines there are no global connections required for the CA to 
converge to its correct state. If a full-adder is to be implemented on such a platform, 
it would ideally not require any global connections either. 

 The cell has no bi-directional communications: it relies on two-inputs and 
two-output lines in a feed-forward arrangement in order to converge. Likewise an 
ideal full-adder design should be built on this arrangement. This means each 
component cell cannot feedback data to a cell that lies earlier on on the data path. 

 

 

 Each cell has two output lines, but the state-output is common to both. Again, the 
most appropriate implementation of a full-adder design will piggy-back these 
existing communications lines and not require additional networking. One 
consequence of this is that no two data lines can cross. 

 Because we want this full-adder to be scalable, the one-bit full-adder modules 
should be stackable, that is, if the modules are arranged one on top of one another, 
the carry-out lines should connect to the carry-in line beneath it. 

 In order for the full-adder to be scalable, the CA state pattern must repeat until it 
uses all the available cells. 

 There should be as few different cell-types (equivalent to the size of the CA 
alphabet) as is necessary, and there should be as few cells per one-bit module as is 
necessary. 

Figure 4 shows how the schematic of figure 1 has been revised to ensure there are no crossed 
data lines. Figure 5 shows the different cell operations and their corresponding state 
assignments. Figure 6 shows the schematic laid out over 16 cells. Figure 7 shows the design 
(implemented on an ALTERA FPGA) self-assembling. Note that this design requires the 
following boundary conditions: 

 The cell connected to input 'A' of the full-adder must be to below a state '7'. 
 The cell connected to input 'B' of the full-adder must be to the right of a state '2'. 
 The top-left cell of the first bit of the full-adder must be below a state '1'. 
 The cell to the right of the top-left cell of the first bit must be below a state '2'. Since 

the bottom row of each 16 cell design starts with the states '1' and '2', these boundary 
conditions propagate to the subsequent bits and the design repeats until it runs out 
of cells. 

 

 
Fig. 4. An alternative one-bit full-adder schematic 
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Fig. 8. A one-bit full-adder self-assembling 
 
4. Design of a self-assembling self-repairing one-bit Arithmetic Logic Unit 
 

In order for the full-adder design to correctly self-assemble, the boundary conditions of the 
array must be precisely set. If these are changed, the arrangement of cell types will change. 
This effect can be taken advantage of by designing the cell array to respond to changes in the 
boundary conditions with desired alternative arrangements. Thus, the full-adder could be 
converted into a full-subtracter by changing one of the boundary conditions. Likewise, the 
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array can be programmed to perform other functions of an arithmetic logic unit (ALU) (e.g. 
AND, OR and NOT gates) with different boundary conditions. 
Since we want the design to scale, these boundary condition changes need to propagate to 
the bottom of the 16 cell arrangement so that the subsequent 16 cells can also re-configure to 
perform the requested function. This requirement is responsible for some of the more esoteric 
logic arrangements (for instance a NOT gate being built from two XOR gates and a NOT 
gate) present in the designs. Figure 9 shows the logic arrangements and boundary conditions 
for the ALU functions, AND, OR, NOT and SUBTRACT. 
 

 
Fig. 9. Cell arrangements and boundary conditions for ALU 

 

 

5. Assessing the reliability of the ALU 
 

The mechanisms of CA and morphogenesis require a homogenous array of 'stem' cells that 
are capable of becoming any type of cell during system development and repair. The LUT of 
FPGAs are conceptually just such a cell, but while some FPGAs are capable of partitioning 
and reprogramming a small portion of their entire configuration, the bit-stream 
configuration data must be provided from a source external to the FPGA. This means that 
without a significant re-design of the FPGA infrastructure, the application of mitosis 
(replication of cell function) is not possible. As a result it is no longer enough for each cell to 
be capable of becoming any other type of cell; instead, each cell must be capable of 
performing the function of any other type of cell without any in-situ re-programming. 
In order to assess the reliability of this self-repairing ALU and compare it to the reliability of 
a standard ALU design and an N-modular redundant ALU design, each will be implemented 
on a field programmable gate array (FPGA). The number of logic blocks used by each 
component of each design and the systems dependence on each will be used with the 
reliability analysis techniques described in the previous chapter in order to assess the MTBF 
of both. 
There are a number of assumptions in this analysis: 

 The FPGA is an ALTERA Stratix II, the design software is QUARTUS. The fitting 
process used by Quartus to convert the VHDL design into a netlist will not 
necessarily create a netlist that uses the fewest number of logic units. As the 
self-repairing ALU is more complicated than a standard ALU, if the conversion 
does not create the smallest design possible the self-repairing ALU will be affected 
to a greater extent. However, for this analysis it is necessary to assume they are both 
affected equally. 

 Each design scales linearly. Thus an eight-bit ALU will use eight times the number 
of logic units as a single-bit ALU. Also a triple-modular redundant system will use 
three times the number of logic units (plus more for the voter) as the single ALU. 

 The MTBF of the design can be assessed by considering the MTBF of the FPGA and 
multiplying by the fraction of it used by the design. While this ignores single points 
of failure (clocks, power lines, etc) it is not unreasonable as the most common 
failure-mode of an FPGA are temporary, localised degredation, typically due to 
stuck-at faults on interconnects (Touba, 1999). 

 The ALTERA does not support partial reprogramming. Thus while the state of each 
cell, their arrangement and interconnections are intrinsically self-repairing, there is 
no way for the function that each cell performs to be corrected in the event of a 
failure. However, for the purposes of this analysis it will be assumed that the 
hardware does support reprogramming and the necessary logic is built into the 
BIST. 

The cell component can be seen in figure 10 and a one-bit ALU comprised of 16 cells can be 
seen in figure 11. 
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dt

                                 (1) 

 
                                        (0) 1,0,0,0P                                   (2) 

 
Q(t), the transition matrix, is derived from the Markov model. Each failure rate, �, refers to a 
transition between states. 
 

                                 ���� � �
��� 0 0
�� ��� 0
0 �� 0

�                              (3) 

 
From (2) and (3) it is possible to form three coupled differential equations, (4), (5) and (6). 
 

                                    ��� ����� � ���������                                (4) 
 

                                ��� ����� � � ������� � �������                            (5) 
 

                                     ��� ����� � � �������                                 (6) 
 
The solution to (4) that meets the initial conditions (2), is (7). 
 
                                         ����� � � �����                                   (7) 
 
Equation (5) can be rearranged to form (8). 
 

                       ��� ����� � ������� � � �������                            (8) 
 
By multiplying (8) by the integrating factor ���� we obtain equations (9) and (10). 
 

                ���� �
�� ����� � ����������� � ������������                      (9) 

 
                                  ��� ����������� � � �����������                          (10) 

 
Substituting (7) into (10) gives (11) and (12). 
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Integrating both sides of (12) with respect to t gives: 
 

                                                     (13) 
 
By dividing both sides of (13) by  we obtain: 
 

                                                    (14) 
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2 1

( ) t tP t e Ce 
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                          (15) 

 
Substituting the initial conditions (2) into (15) we can determine C. 
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2 1
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                           (16) 
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Substituting (17) into (15) we get a final answer for (t). 
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

                          (18) 

 
The sum of the state probabilities must be one, because the system must reside in one of the 
three states.  
 

                                        ( ) 1i iP t                                  (19) 
 
Thus the solution to (6) is found by subtracting the results from the previous two results.  
 

                                  3 1 2( ) 1 ( ) ( )P t P t P t                               (20) 
 
Figure 13 shows the reliability 1 2( ( ) ( ))P t P t  versus time of the self-repairing ALU and an 
N-modular redundant ALU of an equivalent size. 
 



Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 173

 

                                      ( ) ( ) ( )d P t P t Q t
dt

                                 (1) 

 
                                        (0) 1,0,0,0P                                   (2) 

 
Q(t), the transition matrix, is derived from the Markov model. Each failure rate, �, refers to a 
transition between states. 
 

                                 ���� � �
��� 0 0
�� ��� 0
0 �� 0

�                              (3) 

 
From (2) and (3) it is possible to form three coupled differential equations, (4), (5) and (6). 
 

                                    ��� ����� � ���������                                (4) 
 

                                ��� ����� � � ������� � �������                            (5) 
 

                                     ��� ����� � � �������                                 (6) 
 
The solution to (4) that meets the initial conditions (2), is (7). 
 
                                         ����� � � �����                                   (7) 
 
Equation (5) can be rearranged to form (8). 
 

                       ��� ����� � ������� � � �������                            (8) 
 
By multiplying (8) by the integrating factor ���� we obtain equations (9) and (10). 
 

                ���� �
�� ����� � ����������� � ������������                      (9) 

 
                                  ��� ����������� � � �����������                          (10) 

 
Substituting (7) into (10) gives (11) and (12). 
 
                                    ��� ����������� � � �����������                         (11) 
 
                                    ��� ����������� � � �����������                         (12) 
 
 
 
 

 

 

Integrating both sides of (12) with respect to t gives: 
 

                                                     (13) 
 
By dividing both sides of (13) by  we obtain: 
 

                                                    (14) 

 

                                     1 21
2

2 1

( ) t tP t e Ce 
 

  


                          (15) 

 
Substituting the initial conditions (2) into (15) we can determine C. 
 

                                   1 2.0 .01

2 1

0 e Ce 
 

  


                           (16) 

 

                                      1

2 1

0 C
 

 


                               (17) 

 
Substituting (17) into (15) we get a final answer for (t). 
 

                                 1 21
2

2 1

( ) ( )t tP t e e 
 

  


                          (18) 

 
The sum of the state probabilities must be one, because the system must reside in one of the 
three states.  
 

                                        ( ) 1i iP t                                  (19) 
 
Thus the solution to (6) is found by subtracting the results from the previous two results.  
 

                                  3 1 2( ) 1 ( ) ( )P t P t P t                               (20) 
 
Figure 13 shows the reliability 1 2( ( ) ( ))P t P t  versus time of the self-repairing ALU and an 
N-modular redundant ALU of an equivalent size. 
 



 New, Advanced Technologies174

Fig
 
Th
tho
sel
to 
sel
red
red
 

Fig
 

 

g. 13. Reliability c

he reliability dem
ose failure modes
lf-repairing ALU 

the design to r
lf-repairing ALU
dundant system 
dundant cells, fig

g. 14. Reliability c

comparison (No r

monstrated by this
s that can be corr
 can be further inc
replace irreparab

U with 2 redund
of equivalent siz

gure 16 shows the

comparison (2 red

redundant cells) 

s self-repairing d
rected by reconfi
creased by introd

bly broken cells.
dant cells as we
ze. Figure 15 sh

e reliability of a sy

dundant cells) 

design is due to i
iguring the devic
ducing small num
. Figure 14 show
ell as the reliabi
hows the reliabili
ystem with 10 red

 

it being able to to
ce. The reliability 

mbers of redundan
ws the reliability
ility of an N-mo
ity of a system w
dundant cells. 

 

olerate 
 of the 
nt cells 
y of a 
odular 
with 5 

 

 

Fig
 

Fig
 
In 
fai
 

 

g. 15. Reliability c

g. 16. Reliability c

order to quantif
lure (MTTF) of ea

Redundant cel

0 
1 
2 
5 
10 

comparison (5 red

comparison (10 re

fy the reliability 
ach system will b

(
MTTF

ln


lls MTTF (1
self-asse
5.730x10
2.144x10
1.007x10
3.560x10
1.240x10

dundant cells) 

edundant cells) 

improvement sh
be calculated at 40

1400.1

2 1

400

(e 
 

 


106hrs) of 
embling techniqu
02 
03 
04 
06 
012 

hown in figures 1
00.106 hours. 

2 1400. 400.

0

) )e e  

ue 
MTTF (106h
technique 
5.004x102 
5.009x102 
5.362x102 
5.367x102 
5.040x102 

 

 

13-16 the mean t

)
 

hrs) of N-mod 

ime to 



Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 175

Fig
 
Th
tho
sel
to 
sel
red
red
 

Fig
 

 

g. 13. Reliability c

he reliability dem
ose failure modes
lf-repairing ALU 

the design to r
lf-repairing ALU
dundant system 
dundant cells, fig

g. 14. Reliability c

comparison (No r

monstrated by this
s that can be corr
 can be further inc
replace irreparab

U with 2 redund
of equivalent siz

gure 16 shows the

comparison (2 red

redundant cells) 

s self-repairing d
rected by reconfi
creased by introd

bly broken cells.
dant cells as we
ze. Figure 15 sh

e reliability of a sy

dundant cells) 

design is due to i
iguring the devic
ducing small num
. Figure 14 show
ell as the reliabi
hows the reliabili
ystem with 10 red

 

it being able to to
ce. The reliability 

mbers of redundan
ws the reliability
ility of an N-mo
ity of a system w
dundant cells. 

 

olerate 
 of the 
nt cells 
y of a 
odular 
with 5 

 

 

Fig
 

Fig
 
In 
fai
 

 

g. 15. Reliability c

g. 16. Reliability c

order to quantif
lure (MTTF) of ea

Redundant cel

0 
1 
2 
5 
10 

comparison (5 red

comparison (10 re

fy the reliability 
ach system will b

(
MTTF

ln


lls MTTF (1
self-asse
5.730x10
2.144x10
1.007x10
3.560x10
1.240x10

dundant cells) 

edundant cells) 

improvement sh
be calculated at 40

1400.1

2 1

400

(e 
 

 


106hrs) of 
embling techniqu
02 
03 
04 
06 
012 

hown in figures 1
00.106 hours. 

2 1400. 400.

0

) )e e  

ue 
MTTF (106h
technique 
5.004x102 
5.009x102 
5.362x102 
5.367x102 
5.040x102 

 

 

13-16 the mean t

)
 

hrs) of N-mod 

ime to 



 New, Advanced Technologies176

 

With no redundant cells available to the self-assembling design, the MTTF is slightly longer 
than that of its N-modular equivalent. However making available small numbers of cells 
significantly increases its MTTF (by a factor of 1010 hours in the case of 10 redundant cells) 
performance over its equivalent N-modular design. 

 
6. Conclusions 
 

This technique, whilst demonstrating an improved reliability over an equivalent N-modular 
redundant system, is not without cost: 

 The minimum size of the self-assembling ALU is a factor of a hundred times greater 
than that of a single ALU and over thirty times that of a triple modular redundant 
ALU. 

 The design algorithm is not trivial. Modular redundancy can be easily applied to 
any system without a significant schematic re-design. This is not true of the 
self-assembling approach. Firstly an appropriate level for cellular discretisation 
must be selected. Next, the system function must be divided between cells such that 
short, preferably not overlapping, buses between nearest neighbour cells are the 
primary means of data transmission. Lastly the rules necessary to co-ordinate the 
assembly and differentiation of these must be generated. 

For the reasons above, this approach may not be particularly applicable to the design of 
reliable, commercial projects. However it certainly fits into the 'Ultra reliability' category. 
Any system that must operate in harsh environments (e.g. satellites and space shuttles), or 
that cannot tolerate failure, could benefit from this technique. 
The self-assembling, self-repairing capabilities of morphogenesis can be mimicked in the 
design of self-assembling, self-repairing electronic circuits. These circuits are formed on an 
array of discrete, identical cells. To achieve correct system performance, each cell determines 
its state then uses this to determine its component type. Furthermore, these arrays can be 
designed to metamorphosise into different circuits depending on the boundary conditions of 
the array. This design approach has been demonstrated with an ALU design on an FPGA and 
its reliability assessed using state-based models and a stochastic analysis. Subsequently, this 
reliability was compared to the reliability of an N-modular ALU of equivalent FPGA logic 
unit use, and found to perform significantly better.  
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