
Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 161

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic
Unit

David Huw Jones, Richard McWilliam and Alan Purvis

X

Design of a self-assembling, repairing and
reconfiguring Arithmetic Logic Unit

David Huw Jones, Richard McWilliam and Alan Purvis

University of Durham
England

1. Introduction

The consumer will not tolerate products that are prone to failure: cars such as the Skoda
Felicia or the Ford Pinto, motorbikes such as the BSA Dandy scooter, computers such as the
Apple III - these devices were all commercially unsuccessful simply because of their high
failure rate. For a product to succeed, the designer must consider the intended lifespan of the
device and then maximise the probability of its survival for that period.
Within the systems upon which we depend, or choose to trust, for our survival - be they
aeroplanes, trains, armaments or systems critical to a country's infrastructure - failure cannot
be tolerated without adequate notice and provision for repair or replacement. 500 people
died when Pfizer's replacement heart valves failed, costing the company upwards of $200
million. The structural failures of the de Havilland Comet jet aeroplane caused five crashes
before commercial flights were cancelled. A designer must therefore consider the
significance of a component failure and make provisions for repair or replacement.
Components that are too costly to repair or replace, because of limited accessibility or limited
resources, cannot be subject to failure. The early operational failures of the Hubble telescope
were due to a flawed mirror. A space mission costing $8 million was required to fix the
telescope with correcting lenses. Thus for a system to succeed, a designer must consider the
cost of repair when deciding on the required level of reliability.
The trend is for devices to be smaller and more functional than their predecessors. Modular
redundancy, the use of extra copies of failure-prone hardware that can mask, or take the
place of its damaged counterparts, has costs in both size and functionality. If this trend
continues, the price of modular redundancy will become greater and an alternative will need
to be considered.
Aside from demanding applications, reliability engineers face a challenge from systems
formed on unreliable mediums. Plastic electronics systems are formed on flexible substrates,
typically by the sequential deposition of conductive or semi-conductive organic polymers
(such as Poly-3,4-ethylenedioxythiophene) using analogue or digital graphic printing
technologies. Potential applications include flexible displays, photovoltaic’s that can cover
non-planar surfaces, and smart packaging, including battery testers, flexible batteries and
RFID tags. However, flexible substrates are prone to distortion, potentially compromising
the deposited system and causing its failure. Redundancy is particularly well equipped to

10

 New, Advanced Technologies162

cope with the failure of known unreliable sub-systems, but is much less well suited to coping
with a system of which any part, or combination of parts, is likely to fail.
Since 2002 NASA have been running a series of workshops under the title “Ultra reliability”;
this with the goal of increasing systems reliability by an order of magnitude across complex
systems, hardware (including aircraft, aerospace craft and launch vehicles), software, human
interactions, long life missions, infrastructure development, and cross cutting technologies
(Shapiro, 2006). It is not difficult to see the difficulties standard redundancy techniques will
face in long life missions (a manned mission to Mars will take upwards of six months, the
$720 million Mars Reconnaissance Orbiter has a planned life of at least four years) that are
vulnerable to cosmic rays.

2. Morphogenesis-inspired ultra reliability

Morphogenesis provides biological systems with a robust framework for the differentiation
of undeveloped or partially developed cells. Remarkable examples of self-repair
co-ordinated by morphogenesis include:

 The human liver: This organ is capable of withstanding and repairing damage to
up to two-thirds of its constituent cells.

 The Salamander: If bisected from its tail, the tail will often grow back.
 Ascidians (marine filter feeders), whose blood cells alone have been reported to give

rise to a fully functional organism (Berrill and Cohen, 1936).
Morphogens are soluble proteins that diffuse about source cells within developing tissue.
These chemical messages co-ordinate the differentiation of cells, determining what type of
cell belongs where in the tissue. This self-assembly, self-repair mechanism can be modelled
on cellular automata.
Cellular automata (CA) are systems in which space and time are discrete. CA consist of an
array of cells, each of which determines its next state (typically an integer or a colour) from
the state of its immediate neighbours using a next-state rule that is common to every cell. The
analysis presented in (Jones et al., 2008) showed that for the array of cells to converge to one
particular pattern of states regardless of its initial conditions, the next-state rule cannot use its
current state as an input, nor can it use the state of more than one neighbour per axis as an
input. That is, if the array is two-dimensional, in determining its next state a cell can only use
inputs from neighbours either above or below itself, either to the left or to the right of itself.
The paper goes on to demonstrate a deterministic algorithm for the design of CA that
converge to a specific pattern of states.
If each state maps to a particular logic function, the CA will converge toward a pattern of
logic units that could ultimately form any effective electronic system. Such a CA will
converge to this form regardless of its initial conditions, effectively making it intrinsically
self-repairing. Furthermore, if the boundary conditions of this CA are altered the CA will
converge to a different pattern. If this is considered during the design process, the CA
becomes able to self-reconfigure.
To be of any use, a reliability mechanism must be less prone to failure than that which it is
trying to protect. However, as each cell must be identical, achieving this homogeneity for
large system blocks adds a significant cost in replicated function to the design. Thus the
optimum scale at which to discretise the design into a cellular architecture is found at the
minima of total system complexity (see figure 1).

Fig

Ex
sel
cus
of
an

Fig

g. 1. The system c

isting reprogram
lf-reprogrammab
stom Application
logic than an equ
 ASIC is shown in

g. 2. An ASIC imp

cost of morphogen

mmable devices (P
ble logic required
n Specific Integra
uivalent FPGA im
n figure 2.

plementation

nesis at different

PLA, PAL or FPGA
d for this self-a
ted Circuit (ASIC

mplementation. O

 hierarchies

A) are not optimi
assembling algor
C) could be optim

One possible embo

sed for the fine-g
rithm. An appro

mised to use fewe
odiment of a cell w

grained
opriate
r units
within

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 163

cope with the failure of known unreliable sub-systems, but is much less well suited to coping
with a system of which any part, or combination of parts, is likely to fail.
Since 2002 NASA have been running a series of workshops under the title “Ultra reliability”;
this with the goal of increasing systems reliability by an order of magnitude across complex
systems, hardware (including aircraft, aerospace craft and launch vehicles), software, human
interactions, long life missions, infrastructure development, and cross cutting technologies
(Shapiro, 2006). It is not difficult to see the difficulties standard redundancy techniques will
face in long life missions (a manned mission to Mars will take upwards of six months, the
$720 million Mars Reconnaissance Orbiter has a planned life of at least four years) that are
vulnerable to cosmic rays.

2. Morphogenesis-inspired ultra reliability

Morphogenesis provides biological systems with a robust framework for the differentiation
of undeveloped or partially developed cells. Remarkable examples of self-repair
co-ordinated by morphogenesis include:

 The human liver: This organ is capable of withstanding and repairing damage to
up to two-thirds of its constituent cells.

 The Salamander: If bisected from its tail, the tail will often grow back.
 Ascidians (marine filter feeders), whose blood cells alone have been reported to give

rise to a fully functional organism (Berrill and Cohen, 1936).
Morphogens are soluble proteins that diffuse about source cells within developing tissue.
These chemical messages co-ordinate the differentiation of cells, determining what type of
cell belongs where in the tissue. This self-assembly, self-repair mechanism can be modelled
on cellular automata.
Cellular automata (CA) are systems in which space and time are discrete. CA consist of an
array of cells, each of which determines its next state (typically an integer or a colour) from
the state of its immediate neighbours using a next-state rule that is common to every cell. The
analysis presented in (Jones et al., 2008) showed that for the array of cells to converge to one
particular pattern of states regardless of its initial conditions, the next-state rule cannot use its
current state as an input, nor can it use the state of more than one neighbour per axis as an
input. That is, if the array is two-dimensional, in determining its next state a cell can only use
inputs from neighbours either above or below itself, either to the left or to the right of itself.
The paper goes on to demonstrate a deterministic algorithm for the design of CA that
converge to a specific pattern of states.
If each state maps to a particular logic function, the CA will converge toward a pattern of
logic units that could ultimately form any effective electronic system. Such a CA will
converge to this form regardless of its initial conditions, effectively making it intrinsically
self-repairing. Furthermore, if the boundary conditions of this CA are altered the CA will
converge to a different pattern. If this is considered during the design process, the CA
becomes able to self-reconfigure.
To be of any use, a reliability mechanism must be less prone to failure than that which it is
trying to protect. However, as each cell must be identical, achieving this homogeneity for
large system blocks adds a significant cost in replicated function to the design. Thus the
optimum scale at which to discretise the design into a cellular architecture is found at the
minima of total system complexity (see figure 1).

Fig

Ex
sel
cus
of
an

Fig

g. 1. The system c

isting reprogram
lf-reprogrammab
stom Application
logic than an equ
 ASIC is shown in

g. 2. An ASIC imp

cost of morphogen

mmable devices (P
ble logic required
n Specific Integra
uivalent FPGA im
n figure 2.

plementation

nesis at different

PLA, PAL or FPGA
d for this self-a
ted Circuit (ASIC

mplementation. O

 hierarchies

A) are not optimi
assembling algor
C) could be optim

One possible embo

sed for the fine-g
rithm. An appro

mised to use fewe
odiment of a cell w

grained
opriate
r units
within

 New, Advanced Technologies164

The state of each cell must map to a component function, coded in the form of a bitstream
that can be written to a look-up table and executed. Every bitstream required for the
automata is stored in the function look-up table. The bitstream is selected by the cell state,
loaded into the execution look-up table and executed. Every time the cell configuration
changes (as detected by the cell comparator), the execution look-up table is reloaded with a
new bitstream.
Another consideration is the use of redundant cells. Biological implementations of
morphogenesis have an advantage over any electronic implementations: in the event of a
cell being permanently damaged, biology can grow a replacement. This is something that is
currently not possible in electronic devices. Thus, redundant cells - cells that can take the
place of any other in the event of permanent failure - must be an integral part of the design.
In order for a redundant cell to take the place of any damaged cell, every cell would have to
be directly connected to every other cell. An alternative is to place every cell on a shared bus
and provide each cell with an appropriate interface. Dynamic, in-situ re-programmable
routing is another possibility. There are already various algorithms (Thoma, 2003) for
managing dynamic routing.

3. Design of a self-assembling self-repairing one-bit full-adder

The schematic for a one-bit full-adder can be seen in figure 3.

Fig. 3. A 1-bit full-adder schematic

In order to minimise the component count (and therefore the number of components that
contribute to the device failure rate) there are a few constraints to the schematic design:

 Every cell determines its state from two of its immediate neighbours. Other than
power and clock lines there are no global connections required for the CA to
converge to its correct state. If a full-adder is to be implemented on such a platform,
it would ideally not require any global connections either.

 The cell has no bi-directional communications: it relies on two-inputs and
two-output lines in a feed-forward arrangement in order to converge. Likewise an
ideal full-adder design should be built on this arrangement. This means each
component cell cannot feedback data to a cell that lies earlier on on the data path.

 Each cell has two output lines, but the state-output is common to both. Again, the
most appropriate implementation of a full-adder design will piggy-back these
existing communications lines and not require additional networking. One
consequence of this is that no two data lines can cross.

 Because we want this full-adder to be scalable, the one-bit full-adder modules
should be stackable, that is, if the modules are arranged one on top of one another,
the carry-out lines should connect to the carry-in line beneath it.

 In order for the full-adder to be scalable, the CA state pattern must repeat until it
uses all the available cells.

 There should be as few different cell-types (equivalent to the size of the CA
alphabet) as is necessary, and there should be as few cells per one-bit module as is
necessary.

Figure 4 shows how the schematic of figure 1 has been revised to ensure there are no crossed
data lines. Figure 5 shows the different cell operations and their corresponding state
assignments. Figure 6 shows the schematic laid out over 16 cells. Figure 7 shows the design
(implemented on an ALTERA FPGA) self-assembling. Note that this design requires the
following boundary conditions:

 The cell connected to input 'A' of the full-adder must be to below a state '7'.
 The cell connected to input 'B' of the full-adder must be to the right of a state '2'.
 The top-left cell of the first bit of the full-adder must be below a state '1'.
 The cell to the right of the top-left cell of the first bit must be below a state '2'. Since

the bottom row of each 16 cell design starts with the states '1' and '2', these boundary
conditions propagate to the subsequent bits and the design repeats until it runs out
of cells.

Fig. 4. An alternative one-bit full-adder schematic

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 165

The state of each cell must map to a component function, coded in the form of a bitstream
that can be written to a look-up table and executed. Every bitstream required for the
automata is stored in the function look-up table. The bitstream is selected by the cell state,
loaded into the execution look-up table and executed. Every time the cell configuration
changes (as detected by the cell comparator), the execution look-up table is reloaded with a
new bitstream.
Another consideration is the use of redundant cells. Biological implementations of
morphogenesis have an advantage over any electronic implementations: in the event of a
cell being permanently damaged, biology can grow a replacement. This is something that is
currently not possible in electronic devices. Thus, redundant cells - cells that can take the
place of any other in the event of permanent failure - must be an integral part of the design.
In order for a redundant cell to take the place of any damaged cell, every cell would have to
be directly connected to every other cell. An alternative is to place every cell on a shared bus
and provide each cell with an appropriate interface. Dynamic, in-situ re-programmable
routing is another possibility. There are already various algorithms (Thoma, 2003) for
managing dynamic routing.

3. Design of a self-assembling self-repairing one-bit full-adder

The schematic for a one-bit full-adder can be seen in figure 3.

Fig. 3. A 1-bit full-adder schematic

In order to minimise the component count (and therefore the number of components that
contribute to the device failure rate) there are a few constraints to the schematic design:

 Every cell determines its state from two of its immediate neighbours. Other than
power and clock lines there are no global connections required for the CA to
converge to its correct state. If a full-adder is to be implemented on such a platform,
it would ideally not require any global connections either.

 The cell has no bi-directional communications: it relies on two-inputs and
two-output lines in a feed-forward arrangement in order to converge. Likewise an
ideal full-adder design should be built on this arrangement. This means each
component cell cannot feedback data to a cell that lies earlier on on the data path.

 Each cell has two output lines, but the state-output is common to both. Again, the
most appropriate implementation of a full-adder design will piggy-back these
existing communications lines and not require additional networking. One
consequence of this is that no two data lines can cross.

 Because we want this full-adder to be scalable, the one-bit full-adder modules
should be stackable, that is, if the modules are arranged one on top of one another,
the carry-out lines should connect to the carry-in line beneath it.

 In order for the full-adder to be scalable, the CA state pattern must repeat until it
uses all the available cells.

 There should be as few different cell-types (equivalent to the size of the CA
alphabet) as is necessary, and there should be as few cells per one-bit module as is
necessary.

Figure 4 shows how the schematic of figure 1 has been revised to ensure there are no crossed
data lines. Figure 5 shows the different cell operations and their corresponding state
assignments. Figure 6 shows the schematic laid out over 16 cells. Figure 7 shows the design
(implemented on an ALTERA FPGA) self-assembling. Note that this design requires the
following boundary conditions:

 The cell connected to input 'A' of the full-adder must be to below a state '7'.
 The cell connected to input 'B' of the full-adder must be to the right of a state '2'.
 The top-left cell of the first bit of the full-adder must be below a state '1'.
 The cell to the right of the top-left cell of the first bit must be below a state '2'. Since

the bottom row of each 16 cell design starts with the states '1' and '2', these boundary
conditions propagate to the subsequent bits and the design repeats until it runs out
of cells.

Fig. 4. An alternative one-bit full-adder schematic

 New, Advanced Technologies166

Fig

Fig

g. 5. Different typ

g. 6. A one-bit ful

pes of cell

l-adder layout

Fig. 8. A one-bit full-adder self-assembling

4. Design of a self-assembling self-repairing one-bit Arithmetic Logic Unit

In order for the full-adder design to correctly self-assemble, the boundary conditions of the
array must be precisely set. If these are changed, the arrangement of cell types will change.
This effect can be taken advantage of by designing the cell array to respond to changes in the
boundary conditions with desired alternative arrangements. Thus, the full-adder could be
converted into a full-subtracter by changing one of the boundary conditions. Likewise, the

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 167

Fig

Fig

g. 5. Different typ

g. 6. A one-bit ful

pes of cell

l-adder layout

Fig. 8. A one-bit full-adder self-assembling

4. Design of a self-assembling self-repairing one-bit Arithmetic Logic Unit

In order for the full-adder design to correctly self-assemble, the boundary conditions of the
array must be precisely set. If these are changed, the arrangement of cell types will change.
This effect can be taken advantage of by designing the cell array to respond to changes in the
boundary conditions with desired alternative arrangements. Thus, the full-adder could be
converted into a full-subtracter by changing one of the boundary conditions. Likewise, the

 New, Advanced Technologies168

array can be programmed to perform other functions of an arithmetic logic unit (ALU) (e.g.
AND, OR and NOT gates) with different boundary conditions.
Since we want the design to scale, these boundary condition changes need to propagate to
the bottom of the 16 cell arrangement so that the subsequent 16 cells can also re-configure to
perform the requested function. This requirement is responsible for some of the more esoteric
logic arrangements (for instance a NOT gate being built from two XOR gates and a NOT
gate) present in the designs. Figure 9 shows the logic arrangements and boundary conditions
for the ALU functions, AND, OR, NOT and SUBTRACT.

Fig. 9. Cell arrangements and boundary conditions for ALU

5. Assessing the reliability of the ALU

The mechanisms of CA and morphogenesis require a homogenous array of 'stem' cells that
are capable of becoming any type of cell during system development and repair. The LUT of
FPGAs are conceptually just such a cell, but while some FPGAs are capable of partitioning
and reprogramming a small portion of their entire configuration, the bit-stream
configuration data must be provided from a source external to the FPGA. This means that
without a significant re-design of the FPGA infrastructure, the application of mitosis
(replication of cell function) is not possible. As a result it is no longer enough for each cell to
be capable of becoming any other type of cell; instead, each cell must be capable of
performing the function of any other type of cell without any in-situ re-programming.
In order to assess the reliability of this self-repairing ALU and compare it to the reliability of
a standard ALU design and an N-modular redundant ALU design, each will be implemented
on a field programmable gate array (FPGA). The number of logic blocks used by each
component of each design and the systems dependence on each will be used with the
reliability analysis techniques described in the previous chapter in order to assess the MTBF
of both.
There are a number of assumptions in this analysis:

 The FPGA is an ALTERA Stratix II, the design software is QUARTUS. The fitting
process used by Quartus to convert the VHDL design into a netlist will not
necessarily create a netlist that uses the fewest number of logic units. As the
self-repairing ALU is more complicated than a standard ALU, if the conversion
does not create the smallest design possible the self-repairing ALU will be affected
to a greater extent. However, for this analysis it is necessary to assume they are both
affected equally.

 Each design scales linearly. Thus an eight-bit ALU will use eight times the number
of logic units as a single-bit ALU. Also a triple-modular redundant system will use
three times the number of logic units (plus more for the voter) as the single ALU.

 The MTBF of the design can be assessed by considering the MTBF of the FPGA and
multiplying by the fraction of it used by the design. While this ignores single points
of failure (clocks, power lines, etc) it is not unreasonable as the most common
failure-mode of an FPGA are temporary, localised degredation, typically due to
stuck-at faults on interconnects (Touba, 1999).

 The ALTERA does not support partial reprogramming. Thus while the state of each
cell, their arrangement and interconnections are intrinsically self-repairing, there is
no way for the function that each cell performs to be corrected in the event of a
failure. However, for the purposes of this analysis it will be assumed that the
hardware does support reprogramming and the necessary logic is built into the
BIST.

The cell component can be seen in figure 10 and a one-bit ALU comprised of 16 cells can be
seen in figure 11.

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 169

array can be programmed to perform other functions of an arithmetic logic unit (ALU) (e.g.
AND, OR and NOT gates) with different boundary conditions.
Since we want the design to scale, these boundary condition changes need to propagate to
the bottom of the 16 cell arrangement so that the subsequent 16 cells can also re-configure to
perform the requested function. This requirement is responsible for some of the more esoteric
logic arrangements (for instance a NOT gate being built from two XOR gates and a NOT
gate) present in the designs. Figure 9 shows the logic arrangements and boundary conditions
for the ALU functions, AND, OR, NOT and SUBTRACT.

Fig. 9. Cell arrangements and boundary conditions for ALU

5. Assessing the reliability of the ALU

The mechanisms of CA and morphogenesis require a homogenous array of 'stem' cells that
are capable of becoming any type of cell during system development and repair. The LUT of
FPGAs are conceptually just such a cell, but while some FPGAs are capable of partitioning
and reprogramming a small portion of their entire configuration, the bit-stream
configuration data must be provided from a source external to the FPGA. This means that
without a significant re-design of the FPGA infrastructure, the application of mitosis
(replication of cell function) is not possible. As a result it is no longer enough for each cell to
be capable of becoming any other type of cell; instead, each cell must be capable of
performing the function of any other type of cell without any in-situ re-programming.
In order to assess the reliability of this self-repairing ALU and compare it to the reliability of
a standard ALU design and an N-modular redundant ALU design, each will be implemented
on a field programmable gate array (FPGA). The number of logic blocks used by each
component of each design and the systems dependence on each will be used with the
reliability analysis techniques described in the previous chapter in order to assess the MTBF
of both.
There are a number of assumptions in this analysis:

 The FPGA is an ALTERA Stratix II, the design software is QUARTUS. The fitting
process used by Quartus to convert the VHDL design into a netlist will not
necessarily create a netlist that uses the fewest number of logic units. As the
self-repairing ALU is more complicated than a standard ALU, if the conversion
does not create the smallest design possible the self-repairing ALU will be affected
to a greater extent. However, for this analysis it is necessary to assume they are both
affected equally.

 Each design scales linearly. Thus an eight-bit ALU will use eight times the number
of logic units as a single-bit ALU. Also a triple-modular redundant system will use
three times the number of logic units (plus more for the voter) as the single ALU.

 The MTBF of the design can be assessed by considering the MTBF of the FPGA and
multiplying by the fraction of it used by the design. While this ignores single points
of failure (clocks, power lines, etc) it is not unreasonable as the most common
failure-mode of an FPGA are temporary, localised degredation, typically due to
stuck-at faults on interconnects (Touba, 1999).

 The ALTERA does not support partial reprogramming. Thus while the state of each
cell, their arrangement and interconnections are intrinsically self-repairing, there is
no way for the function that each cell performs to be corrected in the event of a
failure. However, for the purposes of this analysis it will be assumed that the
hardware does support reprogramming and the necessary logic is built into the
BIST.

The cell component can be seen in figure 10 and a one-bit ALU comprised of 16 cells can be
seen in figure 11.

 New, Advanced Technologies170

Fig

Fig

Bel

Co
8-b
3-M
 •
 •
16
8-b
 •
 •
Ta

g. 10. A cell of the

g. 11. A 1-bit ALU

low are the result

omponent
bit ALU
Mod 8-bit ALU

• ALU
• Voter
62-Mod 8-bit ALU
bit self-assembli

• Cell
• BIST
ble 1. Comparativ

e ALU design

U made of 16 cells

ts of compiling th

Logi
48
152
48
8

U 9120
ing ALU 9120

87
1

ve logic unit usag

a_in
b_in
c_ou
d_o
n_in
w_i
e_ou
s_ou
rese

s

hese designs for t

ic Units

0
0

ge of different AL

n
n

Logic

ut
out

Logic

n
in

State i

ut
ut

State o

et Globa

the Stratix II FPGA

% of FP
<1%
2%
<1%
<1%
100%
100%
1%
<1%

LU designs

 inputs

 outputs

inputs

outputs

al reset

A.

PGA

A
sel
gre

Th

Th
wo
cop
Th
Us
can
fai

Va
Ba
Op
Pa
En
Qu

Le
Ta

Wh
bec
Ma

Fig

Us
thi

162-modular re
lf-repairing desig
eater number of f

he 162-modular sy

he self-assembling
orking, the system
py the operating

he table below sho
sing the MIL-HDB
n be determined
lure rates for ind

ariable
ase failure rate
perating tempera
ackage failure rat
nvironment factor
uality factor

earning factor
ble 2. Logic unit r

hile it is possible
cause of its state
arkov model (see

g. 12. Markov mo

sing the Chapman
is model in order

edundant system
gn. A simple ana
failures than its st

ystem can tolerate

g system consists
m can tolerate 127
code from the on

ows the reliability
BK-217F standard
 as 0.32p  fail
ividual compone

Nom

1C
ature t
e 2C
r E

Q

L
reliability parame

e to form a faul
-dependent failu
 figure 12) of the

odel of the ALU, m

n-Kolmogorov eq
 to determine the

m uses the sam
alysis shows the
tatic-redundancy

e 1 80
2
N
  mo

 of 128 identical c
7 cell failures at a
ne remaining cell.
y parameters appr
d and a part-stre
lures per 610 ho

ents of the design

menclature

eters for an FPGA

lt-tree model of
ure modes. A mor
 three operating s

memory and proc

quation (1) for M
e probabilities, P(

me resources a
 self-assembling

y equivalent.

dule failures with

cells. Provided the
any one time beca

ropriate to the AL
ss analysis, the fa

ours. Using this a
 can be determine

Category
PLA > 5000 gate
25°C
> 300 Pins
Ground, Fixed
Undocumented

> 2 years
A

the ALU, this w
re appropriate ap
states.

cessor systems

Markov analysis, i
t), of each failure

as the self-assem
solution can tole

hout a system fail

e self-repair code
ause each failed c

LTERA Stratix II F
ailure rate of the
and the table abo
ed.

Value
es 0.042

0.1
0.16
2

d 1

1

would be inappro
pproach is the us

it is possible to a
 mode.

mbling
erate a

lure.

e is still
cell can

FPGA.
 FPGA

ove the

opriate
se of a

analyse

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 171

Fig

Fig

Bel

Co
8-b
3-M
 •
 •
16
8-b
 •
 •
Ta

g. 10. A cell of the

g. 11. A 1-bit ALU

low are the result

omponent
bit ALU
Mod 8-bit ALU

• ALU
• Voter
62-Mod 8-bit ALU
bit self-assembli

• Cell
• BIST
ble 1. Comparativ

e ALU design

U made of 16 cells

ts of compiling th

Logi
48
152
48
8

U 9120
ing ALU 9120

87
1

ve logic unit usag

a_in
b_in
c_ou
d_o
n_in
w_i
e_ou
s_ou
rese

s

hese designs for t

ic Units

0
0

ge of different AL

n
n

Logic

ut
out

Logic

n
in

State i

ut
ut

State o

et Globa

the Stratix II FPGA

% of FP
<1%
2%
<1%
<1%
100%
100%
1%
<1%

LU designs

 inputs

 outputs

inputs

outputs

al reset

A.

PGA

A
sel
gre

Th

Th
wo
cop
Th
Us
can
fai

Va
Ba
Op
Pa
En
Qu

Le
Ta

Wh
bec
Ma

Fig

Us
thi

162-modular re
lf-repairing desig
eater number of f

he 162-modular sy

he self-assembling
orking, the system
py the operating

he table below sho
sing the MIL-HDB
n be determined
lure rates for ind

ariable
ase failure rate
perating tempera
ackage failure rat
nvironment factor
uality factor

earning factor
ble 2. Logic unit r

hile it is possible
cause of its state
arkov model (see

g. 12. Markov mo

sing the Chapman
is model in order

edundant system
gn. A simple ana
failures than its st

ystem can tolerate

g system consists
m can tolerate 127
code from the on

ows the reliability
BK-217F standard
 as 0.32p  fail
ividual compone

Nom

1C
ature t
e 2C
r E

Q

L
reliability parame

e to form a faul
-dependent failu
 figure 12) of the

odel of the ALU, m

n-Kolmogorov eq
 to determine the

m uses the sam
alysis shows the
tatic-redundancy

e 1 80
2
N
  mo

 of 128 identical c
7 cell failures at a
ne remaining cell.
y parameters appr
d and a part-stre
lures per 610 ho

ents of the design

menclature

eters for an FPGA

lt-tree model of
ure modes. A mor
 three operating s

memory and proc

quation (1) for M
e probabilities, P(

me resources a
 self-assembling

y equivalent.

dule failures with

cells. Provided the
any one time beca

ropriate to the AL
ss analysis, the fa

ours. Using this a
 can be determine

Category
PLA > 5000 gate
25°C
> 300 Pins
Ground, Fixed
Undocumented

> 2 years
A

the ALU, this w
re appropriate ap
states.

cessor systems

Markov analysis, i
t), of each failure

as the self-assem
solution can tole

hout a system fail

e self-repair code
ause each failed c

LTERA Stratix II F
ailure rate of the
and the table abo
ed.

Value
es 0.042

0.1
0.16
2

d 1

1

would be inappro
pproach is the us

it is possible to a
 mode.

mbling
erate a

lure.

e is still
cell can

FPGA.
 FPGA

ove the

opriate
se of a

analyse

 New, Advanced Technologies172

 () () ()d P t P t Q t
dt

 (1)

  (0) 1,0,0,0P  (2)

Q(t), the transition matrix, is derived from the Markov model. Each failure rate, �, refers to a
transition between states.

 ���� � �
��� 0 0
�� ��� 0
0 �� 0

� (3)

From (2) and (3) it is possible to form three coupled differential equations, (4), (5) and (6).

 ��� ����� � ��������� (4)

 ��� ����� � � ������� � ������� (5)

 ��� ����� � � ������� (6)

The solution to (4) that meets the initial conditions (2), is (7).

 ����� � � ����� (7)

Equation (5) can be rearranged to form (8).

 ��� ����� � ������� � � ������� (8)

By multiplying (8) by the integrating factor ���� we obtain equations (9) and (10).

 ���� �
�� ����� � ����������� � ������������ (9)

 ��� ����������� � � ����������� (10)

Substituting (7) into (10) gives (11) and (12).

 ��� ����������� � � ����������� (11)

 ��� ����������� � � ����������� (12)

Integrating both sides of (12) with respect to t gives:

 (13)

By dividing both sides of (13) by we obtain:

 (14)

 1 21
2

2 1

() t tP t e Ce 
 

  


 (15)

Substituting the initial conditions (2) into (15) we can determine C.

 1 2.0 .01

2 1

0 e Ce 
 

  


 (16)

 1

2 1

0 C
 

 


 (17)

Substituting (17) into (15) we get a final answer for (t).

 1 21
2

2 1

() ()t tP t e e 
 

  


 (18)

The sum of the state probabilities must be one, because the system must reside in one of the
three states.

 () 1i iP t  (19)

Thus the solution to (6) is found by subtracting the results from the previous two results.

 3 1 2() 1 () ()P t P t P t   (20)

Figure 13 shows the reliability 1 2(() ())P t P t versus time of the self-repairing ALU and an
N-modular redundant ALU of an equivalent size.

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 173

 () () ()d P t P t Q t
dt

 (1)

  (0) 1,0,0,0P  (2)

Q(t), the transition matrix, is derived from the Markov model. Each failure rate, �, refers to a
transition between states.

 ���� � �
��� 0 0
�� ��� 0
0 �� 0

� (3)

From (2) and (3) it is possible to form three coupled differential equations, (4), (5) and (6).

 ��� ����� � ��������� (4)

 ��� ����� � � ������� � ������� (5)

 ��� ����� � � ������� (6)

The solution to (4) that meets the initial conditions (2), is (7).

 ����� � � ����� (7)

Equation (5) can be rearranged to form (8).

 ��� ����� � ������� � � ������� (8)

By multiplying (8) by the integrating factor ���� we obtain equations (9) and (10).

 ���� �
�� ����� � ����������� � ������������ (9)

 ��� ����������� � � ����������� (10)

Substituting (7) into (10) gives (11) and (12).

 ��� ����������� � � ����������� (11)

 ��� ����������� � � ����������� (12)

Integrating both sides of (12) with respect to t gives:

 (13)

By dividing both sides of (13) by we obtain:

 (14)

 1 21
2

2 1

() t tP t e Ce 
 

  


 (15)

Substituting the initial conditions (2) into (15) we can determine C.

 1 2.0 .01

2 1

0 e Ce 
 

  


 (16)

 1

2 1

0 C
 

 


 (17)

Substituting (17) into (15) we get a final answer for (t).

 1 21
2

2 1

() ()t tP t e e 
 

  


 (18)

The sum of the state probabilities must be one, because the system must reside in one of the
three states.

 () 1i iP t  (19)

Thus the solution to (6) is found by subtracting the results from the previous two results.

 3 1 2() 1 () ()P t P t P t   (20)

Figure 13 shows the reliability 1 2(() ())P t P t versus time of the self-repairing ALU and an
N-modular redundant ALU of an equivalent size.

 New, Advanced Technologies174

Fig

Th
tho
sel
to
sel
red
red

Fig

g. 13. Reliability c

he reliability dem
ose failure modes
lf-repairing ALU

the design to r
lf-repairing ALU
dundant system
dundant cells, fig

g. 14. Reliability c

comparison (No r

monstrated by this
s that can be corr
 can be further inc
replace irreparab

U with 2 redund
of equivalent siz

gure 16 shows the

comparison (2 red

redundant cells)

s self-repairing d
rected by reconfi
creased by introd

bly broken cells.
dant cells as we
ze. Figure 15 sh

e reliability of a sy

dundant cells)

design is due to i
iguring the devic
ducing small num
. Figure 14 show
ell as the reliabi
hows the reliabili
ystem with 10 red

it being able to to
ce. The reliability

mbers of redundan
ws the reliability
ility of an N-mo
ity of a system w
dundant cells.

olerate
 of the
nt cells
y of a
odular
with 5

Fig

Fig

In
fai

g. 15. Reliability c

g. 16. Reliability c

order to quantif
lure (MTTF) of ea

Redundant cel

0
1
2
5
10

comparison (5 red

comparison (10 re

fy the reliability
ach system will b

(
MTTF

ln


lls MTTF (1
self-asse
5.730x10
2.144x10
1.007x10
3.560x10
1.240x10

dundant cells)

edundant cells)

improvement sh
be calculated at 40

1400.1

2 1

400

(e 
 

 


106hrs) of
embling techniqu
02
03
04
06
012

hown in figures 1
00.106 hours.

2 1400. 400.

0

))e e  

ue
MTTF (106h
technique
5.004x102
5.009x102
5.362x102
5.367x102
5.040x102

13-16 the mean t

)

hrs) of N-mod

ime to

Design of a self-assembling, repairing and reconfiguring Arithmetic Logic Unit 175

Fig

Th
tho
sel
to
sel
red
red

Fig

g. 13. Reliability c

he reliability dem
ose failure modes
lf-repairing ALU

the design to r
lf-repairing ALU
dundant system
dundant cells, fig

g. 14. Reliability c

comparison (No r

monstrated by this
s that can be corr
 can be further inc
replace irreparab

U with 2 redund
of equivalent siz

gure 16 shows the

comparison (2 red

redundant cells)

s self-repairing d
rected by reconfi
creased by introd

bly broken cells.
dant cells as we
ze. Figure 15 sh

e reliability of a sy

dundant cells)

design is due to i
iguring the devic
ducing small num
. Figure 14 show
ell as the reliabi
hows the reliabili
ystem with 10 red

it being able to to
ce. The reliability

mbers of redundan
ws the reliability
ility of an N-mo
ity of a system w
dundant cells.

olerate
 of the
nt cells
y of a
odular
with 5

Fig

Fig

In
fai

g. 15. Reliability c

g. 16. Reliability c

order to quantif
lure (MTTF) of ea

Redundant cel

0
1
2
5
10

comparison (5 red

comparison (10 re

fy the reliability
ach system will b

(
MTTF

ln


lls MTTF (1
self-asse
5.730x10
2.144x10
1.007x10
3.560x10
1.240x10

dundant cells)

edundant cells)

improvement sh
be calculated at 40

1400.1

2 1

400

(e 
 

 


106hrs) of
embling techniqu
02
03
04
06
012

hown in figures 1
00.106 hours.

2 1400. 400.

0

))e e  

ue
MTTF (106h
technique
5.004x102
5.009x102
5.362x102
5.367x102
5.040x102

13-16 the mean t

)

hrs) of N-mod

ime to

 New, Advanced Technologies176

With no redundant cells available to the self-assembling design, the MTTF is slightly longer
than that of its N-modular equivalent. However making available small numbers of cells
significantly increases its MTTF (by a factor of 1010 hours in the case of 10 redundant cells)
performance over its equivalent N-modular design.

6. Conclusions

This technique, whilst demonstrating an improved reliability over an equivalent N-modular
redundant system, is not without cost:

 The minimum size of the self-assembling ALU is a factor of a hundred times greater
than that of a single ALU and over thirty times that of a triple modular redundant
ALU.

 The design algorithm is not trivial. Modular redundancy can be easily applied to
any system without a significant schematic re-design. This is not true of the
self-assembling approach. Firstly an appropriate level for cellular discretisation
must be selected. Next, the system function must be divided between cells such that
short, preferably not overlapping, buses between nearest neighbour cells are the
primary means of data transmission. Lastly the rules necessary to co-ordinate the
assembly and differentiation of these must be generated.

For the reasons above, this approach may not be particularly applicable to the design of
reliable, commercial projects. However it certainly fits into the 'Ultra reliability' category.
Any system that must operate in harsh environments (e.g. satellites and space shuttles), or
that cannot tolerate failure, could benefit from this technique.
The self-assembling, self-repairing capabilities of morphogenesis can be mimicked in the
design of self-assembling, self-repairing electronic circuits. These circuits are formed on an
array of discrete, identical cells. To achieve correct system performance, each cell determines
its state then uses this to determine its component type. Furthermore, these arrays can be
designed to metamorphosise into different circuits depending on the boundary conditions of
the array. This design approach has been demonstrated with an ALU design on an FPGA and
its reliability assessed using state-based models and a stochastic analysis. Subsequently, this
reliability was compared to the reliability of an N-modular ALU of equivalent FPGA logic
unit use, and found to perform significantly better.

7. References

Berrill N.J, & Cohen, A. (1936). Regeneration in Clavellina lepadiformis, Journal of
experimental biology, 13.

Jones, D. H; McWilliam, R. P. & Purvis, A. (2009), Designing convergent cellular automata,
Biosystems.

Shapiro, A. (2006), Ultra-Reliability at NASA, 44th AIAA Aerospace Sciences Meeting and
Exhibit.

Thoma, Y; Sanchez, E; Arostegui, J. M. & Tempesti, G. (2003), A dynamic routing algorithm
for a bio-inspired reconfigurable circuit, Lecture notes in computer science.

Touba, D. N. A. (1999), A low cost approach to detecting, locating and avoiding interconnect
faults in {FPGA}-based reconfigurable systems, Proceedings of the International
conference VLSI design.

